
Eur. Phys. J. D 1, 117-128 (1998) THE EUROPEAN
PHYSICAL JOURNAL D
c©

EDP Sciences
Springer-Verlag 1998

Relativistic distorted-wave calculation of inelastic electron-alkali
atom scattering

V. Zemana, R.P. McEachranb, and A.D. Staufferc

Department of Physics and Astronomy, York University, Toronto, Ontario, Canada M3J 1P3

Received: 6 June 1997 / Revised: 3 December 1997 / Accepted: 11 December 1997

Abstract. The relativistic distorted-wave method was used to perform calculations for electron impact
excitation of the first (np) 2P1/2,3/2 levels of Na, K and Rb at incident electron energies in the range
20–200 eV. Scattering parameters presented include differential and integrated cross sections, differential
and integrated Stokes parameters, generalized STU-parameters and various collisional alignment and ori-
entation parameters. Comparisons with experiment and other theories are in agreement except for cases
where first-order methods have been previously proven to be insufficient. Relativistic effects, mainly due
to the spin-orbit interaction, have been found to be prominent for rubidium.

PACS. 34.80.Dp Atomic excitation and ionization by electron impact – 34.80.Nz Spin dependence of cross
sections; polarized electron beam experiments

1 Introduction

Electron-atom scattering is currently a very rapidly ex-
panding field. This is due in part to recent advances which
have greatly increased the quality in the production and
detection of spin-polarized electrons, the use of which al-
lows for the exploration of spin-dependent processes such
as electron exchange and the spin-orbit interaction. Be-
cause of the greater complexity of inelastic scattering re-
actions, where radiative decay of the excited atom pro-
duces polarized photons, these processes in particular have
greatly benefited from the recent experimental develop-
ments. As well, improvements in laser technology have al-
lowed for the production of fine- and hyperfine-structure
resolved excited atomic states which can be subsequently
used for superelastic scattering reactions.

Sodium in particular has been an extremely popu-
lar target for electron-atom experiments and calculations.
With an atomic number of 11, sodium is a more complex
atom than either hydrogen or lithium and at the same time
is light enough that relativistic effects are quite small. One
indication of this is the fact that its fine-structure levels
are nearly degenerate. In addition, sodium is easy to work
with experimentally. With the development of superelas-
tic scattering experiments, the fine-structure levels of this
atom can be resolved. These superelastic reactions can be
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described as the time-reverse of inelastic scattering reac-
tions. However, the experiments carried out so far are not
strictly the time-reversal of one another since the preci-
sion of lasers allows for the production of specific excited
hyperfine states to be used for superelastic collisions. In-
elastic experiments are unable to resolve these states due
to the extremely small differences in their energy levels.
Zeman et al. [1] have investigated the differences between
these two approaches and have confirmed that for sodium
they are negligible.

The scattering parameters which provide the most sen-
sitive tests of theoretical methods are those which involve
the use of spin-polarized electrons. The National Insti-
tute of Standards and Technology (NIST) group have per-
formed superelastic e−-Na experiments [2,3] and, with the
help of Hertel et al. [4], have produced results for the sin-
glet and triplet contributions to L⊥ (the angular momen-
tum transferred perpendicular to the scattering plane) and
the ratio r of triplet to singlet cross sections. The supere-
lastic scattering technique has also been used by Nickich et
al. [5] to measure SA, the spin asymmetry parameter for
the fine-structure resolved (3p) 2P1/2,3/2 states. In con-
trast Hegemann et al. [6] have also used spin-polarized
electrons, but for an inelastic scattering experiment and
at energies slightly lower than are considered here. They
measured the parameter Ty (or T⊥) which, in the non-
relativistic limit, is equal to the degree of contraction of
the electron spin-polarization perpendicular to the scat-
tering plane. As well, other experiments have been pro-
posed [7,8] which would allow for the measurement of a
complete set of parameters yielding enough information
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for a “perfect scattering experiment” (assuming relativis-
tic effects are negligible). For alkalis heavier than sodium
there have not been any experiments performed to date
which yield differential parameters (other than cross sec-
tions) in the intermediate energy range, even for unpolar-
ized incident electrons, although two are currently under-
way. These are the superelastic measurements of differen-
tial Stokes parameters for rubidium [9] and inelastic asym-
metry measurements for cesium [10]. A detailed review of
the collisional alignment and orientation parameters for
unpolarized incident electrons has been given by Andersen
et al. [11] and for spin-polarized incident electrons by An-
dersen et al. [12], while the generalized STU-parameters
are reviewed in Bartschat [13], and Kessler [14].

On the theoretical side the most sophisticated method
is the convergent close-coupling (CCC) formalism [15].
This method calculates the total non-relativistic wave-
function of the scattering system to an arbitrary degree of
accuracy, as it includes a sufficient number of higher dis-
crete and continuum states for convergence to be achieved.
This method was used on sodium by Bray [16]. The second-
order distorted-wave Born approximation (DWBA2), de-
veloped by Madison et al. [17], has also proven to be
very accurate. Here the electron-atom interaction is de-
scribed by a two-step process which allows for more accu-
rate calculations at lower incident electron energies where
the approximation of an instantaneous interaction made
by first-order methods becomes invalid. The DWBA2 has
been used for electron impact excitation of both sodium
[18] and potassium [19]. As well, a very accurate coupled-
channel optical (CCO) approximation has been employed
for sodium [20] and potassium [21]. In the low energy
regime, the nonperturbative coupled-channel R-matrix
method has been used to calculate a complete set of scat-
tering parameters for the excitation of sodium to a num-
ber of different states. The results of these can be found
in Trail et al. [22] and Zhou et al. [23].

All of these methods, however, are non-relativistic and
therefore become increasingly inaccurate for heavier atoms.
In this work we use the relativistic distorted-wave (RDW)
approximation which was first developed by Zuo et al. [24]
and extended to alkali atoms by Zeman et al. [25]. Here,
both the atom and the continuum electron are treated in
the Dirac formalism. The use of this method with sodium
is expected to yield results similar to those from the first-
order distorted-wave Born approximation (DWBA) and
can thus be used as a verification of the method in the non-
relativistic regime. For heavier alkalis the RDW method
is used to determine where relativistic effects occur and
therefore where the above non-relativistic methods are
likely to fail.

In this paper we have used the RDW method for the
electron impact excitation of sodium, potassium and ru-
bidium to their first (np) 2P1/2,3/2 levels in the intermedi-
ate energy range. Extensive results have already been re-
ported for the excitation of cesium to a number of different
states [25–28]. The parameters presented here include dif-
ferential cross sections, differential and integrated Stokes
parameters, generalized STU-parameters and other colli-

sional alignment and orientation parameters which have
been previously measured. A brief review of the RDW
method and the various scattering parameters is given in
Section 2. The various results as well as comparisons with
experiments and other theories are found in Section 3. The
conclusions are drawn in Section 4.

2 Theory

The RDW method [24] takes relativistic effects into ac-
count by treating both the atomic and continuum electron
wavefunctions in the Dirac formalism. The atomic orbitals
were obtained by using a multi-configuration Dirac-Fock
algorithm [29]. Our choice of the distortion potential used
to calculate the distorted waves is the well accepted static
potential of the final channel. Details of this method, as
applied to alkali atoms, are given in Zeman et al. [25].

It is important to determine scattering parameters
other than the cross section in order to obtain a more
detailed understanding of the collision process. Also, it is
important to produce scattering parameters as a function
of the scattering angle, since the integrated parameters
mask effects which occur at larger scattering angles. To
obtain the maximum amount of information about the
interaction, i.e., to perform a “perfect scattering experi-
ment”, parameters which depend on the spin-polarization
of the incident electron must also be obtained.

The Stokes parameters are a measure of the polariza-
tion of the photon which is emitted during the decay of
the atom after electron impact excitation. These give an
indication of the magnetic sublevel distribution of the ex-
cited atomic state. The three Stokes parameters which are
normally measured are

P1 = η3 =
I(0◦)− I(90◦)

I(0◦) + I(90◦)
(1a)

P2 = η1 =
I(45◦)− I(135◦)

I(45◦) + I(135◦)
(1b)

P3 = −η2 =
I+ − I−
I+ + I−

(1c)

where I(β) is the intensity of emitted photons polarized
at an angle β with respect to the direction of the inci-
dent electron while I± represents the intensity of left- and
right-handed circularly polarized photons. These intensi-
ties are measured perpendicular to the scattering plane.
The calculation of these parameters can include the de-
polarization due to averaging over the excited hyperfine
states. We adopt the ηi notation if this is the case, and
the Pi notation if the hyperfine depolarization coefficients
are omitted. For the case where the fine-structure excited
states are not resolved the reduced Stokes parameters P̄i
[11] are defined when depolarization due to averaging over
the fine-structure states is neglected. Details regarding the
calculation of the Stokes parameters are given in Bartschat
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et al. [30]. It should be noted that these Stokes parameters
are defined for unpolarized incident electrons and there-
fore mask certain features of the interaction which are
dependent upon the electron spin-polarization. For light
emitted by an atom after excitation by spin-polarized elec-
trons the generalized Stokes parameters [12,31] are used
to describe the polarization state of the photon. Unfortu-
nately, there are no experimental or other theoretical data
for these parameters for the atoms considered here.

The change in spin-polarization of the continuum
electron is described by the generalized STU-parameters.
These parameters have been reviewed in detail in
Bartschat [13] and Kessler [14]. For an incident electron
with spin-polarization P = Pxx̂ + Pyŷ + Pzẑ the spin-
polarization of the scattered electron is given by

P′=
(SP+TyPy)ŷ+(TxPx+UxzPz)x̂+(TzPz−UzxPx)ẑ

1+SAPy
·

(2)

Here we have assumed the collision frame of reference
where ẑ is defined to be the direction of the incident elec-
tron and ŷ is perpendicular to the scattering plane. The
asymmetry parameter SA is a relatively simple parameter
to measure. It is defined as the left-right asymmetry in the
differential cross section after scattering a spin-polarized
electron beam from an unpolarized atom, i.e.,

σ = σun(1 + SAPy) (3)

where σun is the differential cross section for an unpo-
larized electron beam. The experimental determination of
the asymmetry parameter is performed by simply measur-
ing

SAPy =
σ↑ − σ↓

σ↑ + σ↓
(4)

where ↑ indicates that the incident electron beam is spin-
polarized in the positive y-direction, and ↓ in the negative.

Generalizing to spin-polarized atoms [32,33], equation
(3) becomes

σ = σun(1−AexP e
yP

A
y +AsoP e

y +AintPA
y ) (5)

where the superscripts on Py refer to the incident elec-
tron or the atom, and Aso is equal to SA. The experimen-
tal determination of these three asymmetries is found by
measuring

Aex =
(σ↓↑ + σ↑↓)− (σ↑↑ + σ↓↓)

(σ↓↑ + σ↑↓) + (σ↑↑ + σ↓↓)
(6a)

Aso =
(σ↑↑ + σ↑↓)− (σ↓↑ + σ↓↓)

(σ↑↑ + σ↑↓) + (σ↓↑ + σ↓↓)
(6b)

Aint =
(σ↑↓ + σ↓↓)− (σ↑↑ + σ↓↑)

(σ↑↓ + σ↓↓) + (σ↑↑ + σ↓↑)
(6c)

where in this notation the first and second arrows on each
cross section refer to the incident electron and atomic spin-
polarization, respectively. The theoretical calculation of
these parameters is given in Appendix A.

In the non-relativistic fine-structure approximation [34]
LS-coupling, rather than jj-coupling, is employed. Here
the quantum numbers L and S of the total electron-atom
system are assumed to be separately conserved and the
fine-structure atomic states are therefore not resolved. In
this approximation the first resonant excited state of an
alkali atom is referred to as the (np) 2P state. For such
an L = 1 state (as well as a J = 1 state of an atomic
system in a relativistic calculation) there are other sets
of scattering parameters which have a simple physical in-
terpretation. These collisional alignment and orientation
parameters have been described in detail in Andersen et
al. [11] for unpolarized incident electrons and in Andersen
et al. [12] for spin-polarized electrons.

Since most of the experimental and other theoretical
results for sodium have been presented in the form of these
parameters, we too have calculated some of these param-
eters in order to compare with the other sets of data. One
of these is the angular momentum transferred to the atom
perpendicular to the scattering plane. This is simply given
as

L⊥ = −P̄3. (7)

L⊥ can be separated into its singlet (S = 0) and triplet
(S = 1) components, Ls

⊥ and Lt
⊥ [4]. Also in the fine-

structure approximation, the exchange asymmetry param-
eter can be written in terms of these angular momentum
parameters as

Aex =
4L⊥ − 3Lt

⊥ − L
s
⊥

3 (Ls
⊥ − L

t
⊥)

· (8)

Experiments performed to measure these parameters have
been done for sodium using the superelastic scattering
technique by the NIST group [2,3]. The calculation of the
perpendicular angular momentum parameters for supere-
lastic scattering have been presented by Zeman et al. [1],
who also show that for sodium these parameters are al-
most identical to those found in the inelastic scattering
case. The linear Stokes parameters for sodium (see Eqs.
(1a,b)) have also been measured for the superelastic case
[35,36]. These are often represented by the parameters

Plin =
√
P 2

1 + P 2
2 (9a)

γ = 1
2 arg(P1 + iP2). (9b)

For an L = 1 system these two parameters represent im-
portant physical properties of the atomic charge cloud.
The linear polarization Plin is equal to the relative differ-
ence between the length and width of the atomic charge
cloud in the scattering plane, i.e.

Plin =
|ψ|2max − |ψ|

2
min

|ψ|2max + |ψ|2min

(10)
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where ψ is the wavefunction of the exited L = 1 state.
The charge cloud alignment angle γ represents the direc-
tion, with respect to the direction of the incident electron,
where the maximum charge cloud density in the scattering
plane |ψ|2max is found. The minimum charge cloud density
in the scattering plane |ψ|2min is located perpendicular to
|ψ|2max.

3 Results

3.1 Sodium

Other than hydrogen, sodium has been the most frequently
studied alkali for electron-atom collisions. The most so-
phisticated experiments in the intermediate energy range,
where differential parameters other than cross sections
have been measured, are those by McClelland et al. [2],
Scholten et al. [3], Nickich et al. [5], Scholten et al. [35]
and Sang et al. [36]. The most detailed calculations in
the intermediate energy range are the CCC [16,20], and
DWBA2 [18]. Since sodium is considered to be a light
atom where relativistic effects are negligible, we expect
our RDW results to be similar to those obtained from the
DWBA and therefore present a sample of our results for
this atom as a test of our method in the non-relativistic
regime. These results can then give an indication of the
accuracy of the various parameters predicted for heavier
alkalis where experimental results are scarce. Relativistic
effects exhibited by the very sensitive S parameters have
already been tested indirectly by comparing with other
atoms of similar atomic numbers (see, for example Fig. 9
of Zeman et al. [37]) and were found to be reasonably
accurate.

We compare our RDW results for the differential cross
section for excitation to the unresolved (3p) 2P state to
the experimental data at various incident electron ener-
gies in Figure 1 1. The experimental errors are about 50%
for Jiang et al. [40], usually within 20% for Marinkovic
et al. [38], about 10–25% for McClelland et al. [2] and
Scholten et al. [3], within 20% for Teubner et al. [41] and
Buckman and Teubner [42], about 20% for Srivastava and
Vuskovic [39] and less than 30% for Shuttleworth et al.
[43]. Lorentz and Miller [44] have not listed their errors.
The RDW cross sections lie above the experimental mea-
surements at larger scattering angles, but the shape of
the curves are quite accurate. This is an important point
since all of the other scattering parameters involve ratios
of various scattering amplitudes so that inaccuracies in
the magnitudes of the scattering amplitudes tend to cancel
out. Since all of the experimental data, with the exception
of the measurements of Jiang et al. [40], are relative mea-
surements which have later been normalized in a variety
of ways, a comparison of the shapes of the curves is more

1 In this and subsequent figures for Na where the incident
electron energy is listed as 22.1 eV the data of McClelland et al.
[2], Marinkovic et al. [38] and Srivastava and Vuskovic [39] and
the DWBA2 calculations [18] are actually for 20 eV. The curves
do not change appreciably for such small energy differences.

Fig. 1. Comparisons of the differential cross sections with
experiment for the excitation of Na to the unresolved
(3p) 2P state at various energies. , RDW; •, [40]; , [38];
∆, [2,3]; *, [44]; ◦, [41], [42]; �, [39]; ×, [43]. See text regarding
footnote 1.

meaningful than the magnitudes. The measurements of
Jiang et al. [40] are unfortunately limited to a maximum
energy of 22.1 eV and, at that energy, a maximum scat-
tering angle of only 10◦. As well, the magnitudes of the
experimental points themselves are inconsistent. Teubner
et al. [41] have renormalized the data of Srivastava and
Vuskovic [39] and found them to be consistent with theirs.
However, the data of the NIST group [2,3] is consistent
with the original data of Srivastava and Vuskovic [39].

In Figure 2 we compare our RDW differential cross sec-
tions with other theoretical calculations at two different
energies. Apart from the most sophisticated calculations
previously mentioned [16,18,20] we have also included a
first-order DWBA calculation [18] in this figure. Other
theoretical methods which have not been represented here,
in order to keep some clarity in the figures, are the two-
potential localized exchange (TPLE) approximation [45],
the CC4 method [46] and another first-order DWBA ap-
proximation [47]. The latter method employs an optical
potential rather than the usual static potential used by
the RDW and DWBA methods. Therefore, in the non-
relativistic regime, our results should agree most closely
with the DWBA results. This is indeed the case if one
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Fig. 2. As in Figure 1 for various theoretical computations.
, RDW; - - -, DWBA2 [18]; – –, CCC [16] and CCO

[20]; – - –, DWBA [18]. See text regarding footnote 1.

Fig. 3. L⊥, Ls
⊥, Lt

⊥ and Aex for the excitation of Na to the
(3p) 2P state at an incident energy of 40 eV. , RDW;
- - -, DWBA2 [18]; – –, CCC [16]; ∆, [2,3].

examines the data shown at 22.1 eV. As the incident
electron energy is increased, the curves tend to converge
towards each other (except for the TPLE calculations)
thus validating the use of first-order methods (including
the RDW) at higher energies. All of the theoretical cross
sections tend to be greater than the experimental mea-
surements at larger angles, even though the agreement
at smaller angles is very close. This indicates some sort
of systematic error which is being made by either all of
the calculations or all of the experiments. We have not
shown the differential cross sections for the fine-structure
resolved (3p) 2P1/2,3/2 states since their ratio rarely differs
from two by more than 5%. This is an indication of the
validity of the fine-structure approximation for sodium.

The Stokes parameters are a measure of the polariza-
tion of the photon emitted by the excited atom and thus
provide information about the excited atomic state. The

circular Stokes parameter ηy2 is proportional to the per-
pendicular angular momentum transferred to the atom,
L⊥. In LS-coupling we can separate this parameter into
its singlet and triplet components, Ls

⊥ and Lt
⊥. The NIST

group [2,3] have measured these parameters for the case
of superelastic scattering from the (3p) 2P3/2(F = 3) state
of sodium. From these measurements one can also obtain
the exchange asymmetry parameter Aex, assuming LS-
coupling, as shown by (8). We have calculated these pa-
rameters and compare them to experiment in Figure 3 at
40 eV. The differences between the inelastic and supere-
lastic scattering parameters for sodium are negligible [1],
so they can therefore be used interchangeably. Also shown
are various theoretical curves, all of which have been cal-
culated for the corresponding inelastic scattering to the
unresolved (3p) 2P state. These curves correspond to the
CCC formalism [16] as well as the DWBA2 [18]. Other
theoretical results which, due to clarity, are not shown in
these figures include those obtained from the TPLE ap-
proximation [45,48], the DWBA [47] and the CCO [20]
and CC4 [46] methods. For the three perpendicular angu-
lar momenta all calculations give similar results (except
for the TPLE) and are in reasonable agreement with the
experimental data. However, it is evident that Aex is a
much more sensitive parameter, since from equation (8)
it involves the differences of angular momentum param-
eters which are usually almost equal to each other. Our
RDW results for this parameter, along with the DWBA
[18], DWBA [47] and CC4 curves [46], are very inaccurate.
The DWBA2 method is somewhat better, while the CCO
and CCC results are much more accurate and demonstrate
the necessity of effectively including all channels, includ-
ing those representing the continuum, for such a sensitive
parameter.

Like the differential Stokes parameters, the generalized
STU-parameters provide a deeper insight into the scat-
tering interaction than the differential cross sections do.
Whereas the Stokes parameters describe the state of the
excited atom, the generalized STU-parameters describe
the state of the scattered electron. The most straight for-
ward parameter to measure is the asymmetry parame-
ter SA. It is simply the difference between spin-up and
spin-down cross sections as shown in equation (4). There
have been two measurements of this parameter, both us-
ing the superelastic scattering mechanism. The experi-
ments by the NIST group [2,3] have yielded S̄A (here the
bar indicates superelastic scattering) results indirectly by
measuring circularly polarized photon intensities, while
Nickich et al. [5] have directly measured S̄A for both of
the (3p) 2P1/2,3/2 states separately. It can be shown that

S̄A = SP, provided that the frame of reference is the same
for the inelastic and superelastic experiments under con-
sideration [34]. If both experiments are performed in their
respective collision reference frames then their y-directions
are opposite to each other which results in S̄A = −SP.

In Figure 4 we show the spin polarization SP for excita-
tion to the (3p) 2P1/2 state at an incident electron energy
of 22.1 eV. As well as the two sets of experimental data, we
compare our results with the CCC calculation [16] and the
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Fig. 4. Spin polarization SP for the excitation of Na to the
(3p) 2P1/2 state at an incident energy of 22.1 eV. ,
RDW; - - -, DWBA2 [18]; – –, CCC [16]; – - –, DWBA [18]; •,
[5]; ∆, [2]. See text regarding footnote 1.

Fig. 5. Asymmetries for Na at incident energies (in eV) of
, 22.1; - - -, 40; – –, 54.4; – - –, 100. (a) Aso for the

(3p) 2P state. (b) SA for the (3p) 2P1/2 state.

DWBA2 and DWBA [18]. Other calculations not shown
in this figure include the DWBA [47] and TPLE approx-
imation [49]. The CCC results compare well with both
sets of experimental data, which are not themselves always
in agreement with each other. The other calculations are
insufficient in describing the spin polarization, including
even the DWBA2. The difference between the DWBA and
DWBA2 curves [18] provides a direct demonstration of the
effects of the second-order terms. However here, unlike for
the other parameters, our RDW results are not in total
agreement with the DWBA curve. As will be shown in
Figure 5, the fine-structure approximation is valid for this
case so that SP for the (3p) 2P3/2 state is approximately

a factor of (−0.5) times that for the (3p) 2P1/2 state, and
is therefore not shown.

In Figure 5 we show the RDW results for the SA

and Aso parameters for excitation to the (3p) 2P1/2 and

(3p) 2P states, respectively, at various energies. Aso is sim-
ply the average of SA over the two fine-structure states
and represents the strength of the spin-orbit interaction
(see Appendix A). SA is influenced by both the relativis-
tic spin-orbit interaction and the non-relativistic electron
exchange. Aso is very small for sodium, although it in-
creases slightly at 100 eV. This increase can be attributed
to the deeper penetration of the incident electron into the

atom. SA is also quite small in magnitude and is seen to
decrease as the energy increases. This decrease occurs be-
cause the value of the incident electron energy is moving
farther away from the energy of the atomic electrons (espe-
cially the valence electron). Since at 100 eV the exchange
terms are so small, the fine-structure approximation is in
fact invalidated at larger scattering angles even though
the spin-orbit interaction is not very strong.

In summary, the comparisons of our RDW results with
experiments and other theories for sodium provide a thor-
ough test of the RDW formalism in the non-relativistic
regime. These comparisons are very favorable for most of
the scattering parameters with the exception of the spin-
sensitive asymmetry parameters. However, for these pa-
rameters, it has already been shown [18] that a first-order
method is insufficient. For heavy atoms, where the rela-
tivistic spin-orbit interaction dominates over electron ex-
change, we have found that indirect comparisons of our S
parameters with experiment are favourable. We can there-
fore conclude that the RDW method is accurate in all
cases except those describing the electron exchange mech-
anism in the spin-sensitive parameters.

3.2 Potassium

Potassium, with an atomic number of 19, has also been
generally considered to be an atom light enough that rel-
ativistic effects can be neglected. However, there have not
been any tests performed of the validity of the fine-struc-
ture approximation for this atom (experimental or theo-
retical). In fact, there have not been any measurements
made at all of differential parameters other than cross
sections. Since the fine-structure approximation fails for
sodium at larger energies, we can expect the same (at
least) to occur for potassium.

In Figure 6 the differential cross sections for the unre-
solved (4p) 2P state at various energies are shown. These
are compared with the inelastic scattering experiments
of Vuskovic and Srivastava [50] with experimental errors
listed as 18%, Buckman et al. [51] with uncertainties of
under 20% and Williams and Trajmar [52] with errors as
great as 50%. All three experiments measured relative val-
ues which were later normalized in various ways. We also
compare our results with the theoretical calculations using
the DWBA2 [19], the DWBA [53] and the 17CCO6 ap-
proximation [21]. Verma and Srivastava [53] give DWBA
results for several different choices of distortion potential.
We have plotted their DWBA results for the case where
the final distortion potential is used in both the initial and
final channels, which is the potential that we have used,
and which has been found to best approximate higher or-
der effects [54]. Other theoretical methods which have not
been shown in Figure 6 include the unitarized distorted-
wave Born approximation (UDWBA) [55] and the 4CCO
method [56]. As was the case with sodium, the theoreti-
cal results tend to converge to one another as the energy
increases. The agreement is excellent with the experimen-
tal data at small scattering angles (< 15◦). At larger an-
gles the general shape of our curves compares well with
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Fig. 6. Differential cross sections for excitation of K to the
(4p) 2P state at various energies. , RDW; - - -, DWBA2
[19]; – –, 17CCO6 [21]; – - –, DWBA [53]; �, [50]; ◦, [51]; •,
[52].

the experimental results of Vuskovic and Srivastava [50]
and Buckman et al. [51], but the magnitudes tend to be
larger. As was the case with sodium, all of the theoreti-
cal curves are greater in magnitude than the experimental
results (with the exception of the one set of data points
in Williams and Trajmar [52]). Out of all of the theo-
retical curves, the 17CCO6 calculations have the smallest
cross section magnitudes. This is particularly evident at
smaller energies. One particularly encouraging feature of
our RDW results at 100 eV is the relative magnitudes of
the two minima. The ratio of the two minima is best ap-
proximated by the RDW curve. As will be shown later
in this section, the non-relativistic fine-structure approx-
imation is invalid at this energy, although the spin-orbit
interaction is still relatively weak. Future work needs to
be done in this region to determine whether this feature
of the differential cross section is a result of relativistic
effects. As well, at 200 eV the RDW cross sections are
in excellent agreement with experiment, although data
only exists up to a maximum scattering angle of 16◦. At
this angle for other energies, however, our curves are al-
ready visibly greater in magnitude than the experimental
points. The ratio of the (4p) 2P3/2 differential cross sec-

Fig. 7. L⊥, Ls
⊥, Lt

⊥ and Aex for the excitation of K to the
(4p) 2P state at an incident energy of 20 eV. , RDW;
- - -, 17CCO6 [21]; – –, DWBA [53].

tions to the (4p) 2P1/2 is almost always within 5% of the
non-relativistic value of two.

For the differential Stokes parameters there have not
been any experimental results to date, but the 17CCO6
formalism [21] has been used to calculate the three perpen-
dicular angular momentum parameters as well as Aex at
an incident electron energy of 20 eV. As well, the DWBA
[53] has been used to calculate these parameters at several
different energies. In Figure 7 we present these parameters
at 20 eV. The 17CCO6 results are probably more accurate
since this method is more sophisticated than the DWBA
and, as will be shown later in this section, relativistic ef-
fects are not that large for potassium. For the three angu-
lar momentum parameters it is encouraging to note that
our calculations reproduce the features of the 17CCO6 cal-
culations better than the DWBA. For Aex the RDW and
DWBA calculations produce similar results which are in
poor agreement with those from the 17CCO6 approxima-
tion. As was the case for sodium, the Aex parameter is
much more sensitive to higher order effects than the an-
gular momentum parameters. As the energy is increased
the exchange asymmetry becomes smaller in magnitude
and the values of the three angular momentum parame-
ters approach each other. In Figure 8 we show the P̄lin and
γ parameters at energies of 40 and 100 eV. The only other
results with which we can compare these parameters to are
the DWBA [53] calculations. With the exception of a few
discrete angular values, the comparison of these param-
eters is good. Since for sodium we found the RDW and
DWBA methods fairly accurate in predicting these pa-
rameters, they are also probably accurate for potassium
as well.
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Fig. 8. P̄lin and γ for the excitation of K to the (4p) 2P state at
incident energies of 40 and 100 eV. , RDW; – –, DWBA
[53].

Fig. 9. As in Figure 5 for the excitation of K to the
(4p) 2P1/2,3/2 states at energies of , 20; - - -, 40; – –,
60; – - –, 100 eV.

Unlike sodium where the S parameters have been ex-
tensively studied, for lower energies at any rate, there
have been no experimental or other theoretical studies
of the generalized STU-parameters for potassium at any
energies. In Figure 9 we show the SA parameter for the
(4p) 2P1/2 state, and the spin-orbit asymmetry Aso for the

unresolved (4p) 2P state, at various energies. Relativistic
effects are prominent in areas where |Aso| > 0, and domi-
nate over electron exchange in areas where SA ≈ Aso. Aso

for the unresolved state is calculated from the formula

Aso =
σ(1/2)SA(1/2) + σ(3/2)SA(3/2)

σ(1/2) + σ(3/2)
(11)

and since the ratio of the cross sections for the fine-struc-
ture states is close to its non-relativistic value as noted
earlier, the SA parameter for the (4p) 2P3/2 state 4p can be

Fig. 10. Differential cross sections for the excitation of Rb
to the (5p) 2P state at various energies. , RDW; – –,
DWBA [58]; �, [57].

calculated to a good approximation from the data shown
in Figure 9 and therefore has not been shown. Here, the
spin-orbit interaction is stronger than for sodium. The
results at 100 eV in particular fail to follow the non-
relativistic approximation. The two dips at this energy
show a stronger deviation from the fine-structure approx-
imation, especially the dip at about 125◦ since the SA

parameter is almost equal to Aso there, indicating com-
plete dominance of the spin-orbit interaction over electron
exchange. However, the spin-orbit interaction is still not
that large there, so this dominance is mostly a result of
a lack of electron exchange. At any rate, recall that it is
the magnitude of this peak that, for the differential cross
section, is in correct proportion to the magnitude of the
other peak according to experiment.

3.3 Rubidium

Rubidium has been the least studied alkali for electron-
atom interactions. On the theoretical front, this may well
be because with an atomic number of 37 it is consid-
ered heavy enough to probably warrant relativistic treat-
ment, but light enough that theorists have chosen to test
their relativistic models on cesium. However, since we have
found potassium to exhibit relativistic effects we certainly
expect rubidium to do so as well.

The differential cross section calculations for the exci-
tation to the unresolved (5p) 2P state are shown in Fig-
ure 10 for various energies. They are compared to the ex-
perimental data of Vuskovic et al. [57] and some DWBA
results of Pangantiwar and Srivastava [58]. The distortion
potential used for the DWBA results is the initial static
potential in the initial channel, and the final static po-
tential in the final channel. We have used the final static
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Fig. 11. L⊥, P̄lin and γ for the (5p) 2P state of Rb at an
incident electron energy of 20 eV. , RDW; – –, DWBA
[58].

potential in both channels. However, for the parameters
considered in Pangantiwar and Srivastava [58], we have
found that our RDW results are only marginally affected
by this change in distortion potential. The experimental
errors are listed as 20% for scattering angles less than
50◦ and between 30 and 50% for scattering angles greater
than 50◦. At small scattering angles our calculations are
in excellent agreement with both sets of data at the two
available energy values of 20 and 200 eV. At other an-
gles we can only make comparisons at 20 eV. This may
be a little low for producing accurate results using the
RDW method, but the one minimum exhibited by the ex-
perimental data does correspond to a dip in our RDW
curve. The DWBA curve, however, appears almost struc-
tureless at larger scattering angles. The difference between
the RDW and DWBA calculations should only be the in-
clusion of a relativistic formalism, so if we are to believe
the DWBA cross section then relativistic effects are indeed
very prominent for rubidium.

There are presently no experimental predictions with
which to compare the RDW differential Stokes parameters
to, although there is currently a superelastic scattering
experiment underway which is expected to yield measure-
ments for these parameters [9]. In Figure 11 we present pa-
rameters (L⊥, P̄lin and γ) which completely describe the
polarization of the emitted photons after the (5p) 2P state
has been excited by unpolarized electrons at 20 eV. The
RDW results for these are compared to those from the
DWBA of Pangantiwar and Srivastava [58]. At smaller
scattering angles the comparison is good, but at larger
angles the DWBA curves tend to become structureless
(as was the case with the differential cross section). These
parameters calculated by the RDW method were seen to

Fig. 12. L⊥, P̄lin and γ for the (5p) 2P state of Rb at various
energies. , 40; - - -, 60; – –, 100 eV.

Fig. 13. The integrated Stokes parameter ηy3 for the
(5p) 2P3/2 state of Rb. , RDW; ◦, [59]

compare quite accurately to experiment for sodium, and
should therefore be reliable here as well. The RDW calcu-
lations at higher energies are shown in Figure 12.

For the integrated Stokes parameters, the only data
with which we can compare our results is for the ηy3 pa-
rameter for the (5p) 2P3/2 state. This parameter is shown
in Figure 13 along with the experimental results of Chen
and Gallagher [59]. Corrections due to cascade interac-
tions have not been made to these measurements. Never-
theless, the agreement between the RDW calculations and
the experimental measurements is quite good especially at
lower energies.

In Figure 14 we show the asymmetry parameter SA for
excitation to the (5p) 2P1/2 state and the spin-orbit asym-

metry Aso for excitation to the unresolved (5p) 2P state.
The spin-orbit asymmetry shows moderately strong rel-
ativistic effects as the Aso parameter rises to almost 0.3
at an energy of 60 eV. The SA parameter has the same
value in this region, indicating that the asymmetry is due
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Fig. 14. As in Figure 9 for the excitation of Rb to the
(5p) 2P1/2,3/2 states.

almost entirely to relativistic effects. This peak in particu-
lar should be experimentally measurable, even though the
peaks for these parameters correspond to minima in the
differential cross sections.

4 Conclusions

We have used the RDW method for the electron impact
excitation of the first (np) 2P1/2,3/2 states of sodium, potas-
sium and rubidium in the intermediate energy range. The
scattering parameters calculated include the differential
cross sections, differential and integrated Stokes parame-
ters and the generalized STU-parameters. As well, we have
calculated some collisional alignment and orientation pa-
rameters in order to compare with experimental results.
For sodium there have been numerous experimental and
other theoretical results with which to compare. It is for
this reason that we have considered sodium with our RDW
formalism. Although sodium is too light to exhibit signifi-
cant relativistic effects, available data for comparisons for
heavy atoms is scarce. The detailed comparisons we were
able to make with sodium therefore gives an indication of
where our RDW method should yield reliable results for
heavier atoms where we often do not have other data with
which to compare.

For sodium, we have in fact found that at higher en-
ergies (approaching 100 eV) the fine-structure approxi-
mation does not to hold, but only because electron ex-
change becomes very small – the spin-orbit interaction is
still quite weak. Our sodium cross sections improve as the
incident electron energy increases. The Stokes parameters
compare well with experiment, but the spin-sensitive SP

and Aex parameters are found to be inaccurate. However,
these inaccuracies are consistent with other first-order cal-
culations, demonstrating the need for more sophisticated
calculations for such sensitive parameters.

Potassium has also been a popular target for experi-
menters and other theorists. As is the case for sodium, cal-
culations other than our RDW approximation have been
performed in the fine-structure approximation. Our re-
sults show that the spin-orbit interaction is visible at all
energies and often dominates over the electron exchange

mechanism for the generalized STU-parameters. However,
the spin-orbit interaction is still relatively weak. Again our
cross sections improve with increasing energy. The differ-
ential Stokes parameters compare well with other calcula-
tions, but once again Aex is different from that calculated
in the more accurate 17CCO6 approximation, but com-
pares well with the DWBA calculation (as it should).

The results for rubidium show definite relativistic ef-
fects indicating a necessity for using relativistic methods.
Unfortunately, there is a lack of data with which to com-
pare much of these data. At 200 eV the differential cross
sections compare well with experiment in the small angu-
lar region where data is available. From our sodium (and
potassium) comparisons we expect that the scattering pa-
rameters dealing with unpolarized incident electrons are
accurate. Although the asymmetry parameters have been
found to be inaccurate in the non-relativistic region where
electron exchange dominates, comparisons of the S pa-
rameters produced by the spin-orbit interaction for heavy
atoms (see, for example [37]) imply that these parame-
ters should be accurate in regions where the spin-orbit
interaction is dominant. We are therefore confident in our
predictions of the relativistic effects exhibited by the pa-
rameters in Figure 14 for rubidium.

We would like to thank Prof. D. H. Madison for performing
some DWBA calculations for us. We are grateful to Dr. I. Bray
for sending us detailed results of his calculations. This work
was supported in part by the Natural Sciences and Engineering
Research Council of Canada.

Appendix A: Calculation of Asymmetry Pa-
rameters

If electrons with spin polarization P e perpendicular to the
scattering plane interact with atoms with spin polarization
PA, also perpendicular to the scattering plane, then the
differential cross section can be written as [32,33]

σ = σun(1−AexP ePA +AsoP e +AintPA) (A1)

where σun is the differential cross section for unpolar-
ized electrons scattering from unpolarized atoms. For ex-
cited states where the fine-structure levels are unresolved
Aex corresponds to the asymmetry caused by electron
exchange alone while Aso corresponds to the asymme-
try caused by the spin-orbit interaction alone. Both pro-
cesses together produce an interference asymmetry Aint.
If the fine-structure states are resolved then the causes of
these asymmetries can no longer be separated into these
three categories. For example, electron exchange then con-
tributes to Aso, and this parameter is therefore normally
referred to as simply the asymmetry parameter SA.

In this appendix we derive expressions for these three
asymmetries in analogy to the derivation of SA given in
Bartschat [13]. Starting with the initial electron and atomic
density matrices in the collision frame,

(ρe)in = 1
2

(
1 −iP e

iP e 1

)
(ρA)in = 1

2

(
1 −iPA

iPA 1

)
(A2)
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we calculate the differential cross section as

σ=Tr(ρ)out=
∑

M0M′0m0m′0

{M ′0m
′
0;M0m0} (ρe

m′0m0
)in(ρA

M′0M0
)in.

(A3)

We have used the definition of the final density matrix
[60],

ρout = TρinT † (A4)

where T is the transition operator, and we have defined
the quantity

{M ′0m
′
0;M0m0} ≡

∑
M1m1

f(J1M1m1;J0M
′
0m
′
0)

f∗(J1M1m1;J0M0m0) (A5)

where f represents the scattering amplitudes (which are
proportional to the T -matrix elements). J and M refer to
total atomic angular momentum quantum numbers, while
m is the z-component of the continuum electron. Here we
use the notation where the subscripts 0 and 1 refer to
initial and final states, respectively. From the hermiticity
of the reduced density matrix and the reflection invariance
of the scattering amplitudes with respect to the scattering
plane,

f(J1M1m1;J0M0m0) =

= Π1Π0(−1)J1−M1+1/2−m1+J0−M0+1/2−m0

× f(J1 −M1 −m1;J0 −M0 −m0) (A6)

where Π0 and Π1 correspond to the parities of the atomic
states, the quantity defined in (A5) has the following prop-
erties:

{M ′0m
′
0;M0m0} = {M0m0;M ′0m

′
0}
∗

(A7)

{M ′0m
′
0;M0m0} = (−1)M

′
0−M0+m′0−m0

× {−M ′0 −m
′
0;−M0 −m0} . (A8)

Using these properties along with (A1)–(A3) we obtain

Aex =
1

2σun
Re
[{

1
2

1
2 ;− 1

2 −
1
2

}
−
{

1
2 −

1
2 ;− 1

2
1
2

}]
(A9)

Aso =
1

σun
Im
{

1
2

1
2 ; 1

2 −
1
2

}
(A10)

Aint =
1

σun
Im
{

1
2

1
2 ;− 1

2
1
2

}
. (A11l)

Note that equation (A10) is equivalent to the definition of
SA in Bartschat [13].
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